

DOE Advanced Reactor Initiatives

Workshop on Advanced Reactor Licensing

Trevor Cook
Office of Nuclear Energy
U.S. Department of Energy

April 25, 2017

DOE Vision and Strategy

DOE issued its "VISION and STRATEGY for the Development and Deployment of Advanced Reactors"

https://energy.gov/ne/downloads/vision-and-strategy-development-and-deployment-advanced-reactors

- Complementary with NRC's Implementation Action Plan
- Includes a near term focus on an NRC regulatory framework being established for advanced non-LWRs

VISION and STRATEGY

for the Development and Deployment of Advanced Reactors

Priorities for Advanced Reactors

Nuclear Energy

- Work with NRC and industry to develop a framework for advanced reactor licensing
- Make DOE assets and expertise available to industry and academia via the GAIN Initiative
- Conduct cutting edge research to enable the commercial deployment of advanced reactors by the 2030's
- Applying Modeling and Simulation tools suitable for analysis of advanced reactor systems

Establishing a Regulatory Framework for Advanced Reactors

Key constituents of a regulatory framework that will increase regulatory certainty for advanced reactors include:

- Identify and resolve key Commission policy issues
- Adapt LWR-based regulatory requirements to advanced non-LWRs
 - Informed by results of DOE's focused R&D activities
- Establish Licensing Technical Requirements
 - Enhanced by development of industry consensus Codes & Standards
- Establish staged/phased review processes

Gateway for Accelerated Innovation in Nuclear (GAIN)

- GAIN was created to provide access to state-of-the-art DOE capabilities for nuclear energy
- GAIN facilitates workshops and meetings to advance understanding of needs and abilities
- New round of GAIN Vouchers announced
 - Letters of intent by March 9, 2017 were encouraged
 - RFA submittal period March 13 April 10, 2017
 - Anticipate funding as many as 20 vouchers for FY2017, subject to appropriation

https://gain.inl.gov

Advanced Reactor Technologies Focus Areas

■ Fast Reactor Technologies

- For actinide management and electricity production
- Current focus on sodium coolant

■ Gas Reactor Technologies

For electricity and process heat production

■ Molten Salt Reactor Technologies

Commonalities across multiple R&D technologies

■ Advanced Reactor Demonstration and Industry Awards

- Continued support for ARC 15 awards
 - X-energy
 - Southern Company

Fast Reactor Technologies

Nuclear Energy

Demonstrate feasibility of advanced systems and component technologies

- Mechanisms Engineering Test Loop (METL) facility at ANL multiple test vessels for component testing in prototypic conditions
 - In FY17, commissioning, start-up testing and introduction of first test assembly
 - Locations available for industry-defined component, materials or equipment testing
- Development of under-sodium inspection techniques and instruments

■ Methods and code validation to support design and licensing

- Detailed analysis and international benchmarking of fast reactor safety tests conducted at demonstration reactors
- Safety analysis code improvements and validation and verification
- Thermal hydraulic and neutronic code development

Advanced materials qualification

- Qualification of alloys for anticipated operation conditions in SFRs
- Material testing for Grade 91 and Alloy 709 for use in fast reactor development
- Structural material testing data exchange with Japan to support code qualification

Na-CO2 Interaction Loop at Argonne National Laboratory

Mechanisms Engineering Test Loop (METL) facility at ANL – multiple test vessels for component testing in prototypic sodium conditions

Gas Reactor Technologies R&D

Nuclear Energy

Advanced materials qualification

- Graphite qualification for use in HTRs through a series of baseline characterizations, irradiation creep testing in ATR, irradiated properties testing, and model development
- Approval of ASME code case for Alloy 617 for anticipated operation conditions in HTRs - heat exchangers and steam generators
- Update high-temperature design methods in ASME Code

■ AGR fuel qualification program

 Fabrication, irradiation and PIE to verify superior TRISO fuel performance under normal operating and potential accident conditions

Scaled experiments to support design and licensing

- Simulate coolant flow and heat transport in and from HTRs during accident scenarios – code validation to support licensing
 - Natural Convection Shutdown heat removal Test Facility (NTSF) at ANL for severe accident heat removal
 - High Temperature Test Facility (HTTF) at Oregon State University for core thermal hydraulics – heated prismatic block core simulator, ¼ scale

Natural circulation Shutdown heat removal Test Facility (NSTF) for vessel cooling studies

High Temperature Test Facility (HTTF) at Oregon State University

■ High Temperature Fission Chamber development

Molten Salt Reactor Technologies R&D

Nuclear Energy

- Molten salt test loop at ORNL for testing tritium management technology
- MSR information recovery and preservation
- Other current work funded under university grants and Integrated Research Projects
 - High-Temperature Salt-Cooled Reactor for Power and Process Heat (2011, MIT, Wisconsin, UC Berkeley)
 - Integrated Approach to FHR Technology and Design Challenges (2014, MIT and Georgia Tech)

■ Future work could include:

- Demonstrate the technology viability, component and system reliability, and safety by constructing and operating appropriate test facilities
 - Identify and establish R&D infrastructure (loops, test stands, etc.,)
- Advanced Materials Qualification
 - ASME code case for Hastelloy N a high nickel alloy compatible with salt-cooled reactors
 - Methods to allow use of salt-corrosion-resistant clad structural materials
- Approaches for qualification of liquid fuels
- Modeling and Validation to support the design, operations, and licensing

Modeling and Simulation

Nuclear Energy

- NEAMS and CASL are major DOE investments in new and improved modeling tools and methods
- Validated modeling and simulation tools hold the potential for accelerating the design and licensing of advanced reactors

■ Dr. Stanek will talk to the specifics of modeling and simulation Tangential Stress (MPa)

later today

BISON 3D capability demonstrated on an eighth-of-a-particle with localized thinning of the SiC layer at random locations

ARC-15 Awards

Nuclear Energy

■ The X-energy ARC15 project has three main thrusts

- Further the Xe-100 HTGR pebble bed design
- Establish pebble fuel manufacturing capability
- Engage the NRC through white papers and topical reports

■ The Southern Company MCFR Risk Reduction Activities

- R&D in key areas of salt studies, material development and reactor licensing.
- Year 1 develop Separate Effects Test (SET) and conceptual design of the Integrated Effects Test (IET), which will be constructed in Year 3
- IET operations (Years 4-5) will validate the behavior of fuel salt (using depleted uranium) at temperature and with relevant materials.

Summary

Nuclear Energy

DOE Advanced Reactor Initiatives:

- Work with industry and NRC on licensing framework
- Leverage GAIN to align advanced reactor R&D with U.S. industry needs
- Fund the labs, universities and industry to conduct cutting edge research to close the knowledge gaps
- Applying modeling and simulation tools of the future

Collectively – DOE initiatives are enabling the future of nuclear energy